Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Xiao-Chun Huang ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathbf{b}}{ }^{\text {* }}$

${ }^{\text {a }}$ Department of Chemistry, Shantou University, Shantou, Guangdong 515063, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.023$
$w R$ factor $=0.060$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

Di- μ-iodo-bis[(3-cyanopyridine- κN)copper(I)]

The Cu^{I} atom in the centrosymmetric title compound, $\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$, shows tetrahedral coordination; the I atom functions as a μ_{2} bridge.

Received 24 June 2004 Accepted 28 June 2004 Online 9 July 2004

Comment

Cuprous halide clusters display a wide variety of structural motifs in their complexes with nitrogen heterocycles, as well as in their nitrile complexes. Such complexes possess diverse photophysical properties (Ford et al., 1999). Cuprous iodide forms a large number of adducts with substituted pyridine heterocycles in which one adduct molecule associates with another through iodide bridges, forming a dimeric entity, e.g. $\left[\mathrm{CuI}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{2}\right]_{2}$ (Dyason et al., 1984). 3-Cyanopyridine is a heterocyclic ligand having both a Lewis-basic aromatic site and a cyano group; it does not cause steric crowding, unlike, for example, 2-methylpyridine (Habiyakare et al., 1992; Healy et al., 1983). This reagent also affords a dinuclear compound, (I), in which the $\mathrm{Cu}-\mathrm{I}$ bonds are of nearly identical lengths [2.6450 (5) and 2.6496 (5) Å] (Fig. 1).

This centrosymmetric compound has a structure similar to that of the 3-cyanopyrazine adduct, with the Cu^{I} atom in a

ORTEPII (Johnson, 1976) plot of (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii. [Symmetry code: (i) $1-x, 1-y, 1-z$.]
tetrahedral $\mathrm{N}_{2} \mathrm{I}_{2} \mathrm{Cu}$ geometry. The structure of the 3-cyanopyrazine adduct has been described in detail (Rossenbeck \& Sheldrick, 1999).

Experimental

A mixture of cuprous iodide $(0.19 \mathrm{~g}, 1.0 \mathrm{mmol}), 3$-cyanopyridine $(0.10 \mathrm{~g}, 1.0 \mathrm{mmol})$ and acetonitrile $(10 \mathrm{ml})$ was sealed in a $23-\mathrm{ml}$ Teflon-lined bomb, which was heated in an oven to 433 K for 80 h . The oven was cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$. Orange crystals were collected and washed with water. Elemental analysis calculated (\%) for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{Cu}_{2} \mathrm{I}_{2} \mathrm{~N}_{8}$: C 36.15, H 2.02, N 14.05; found: C 36.08, H 2.12, N 14.01 .

Crystal data

$\left[\mathrm{Cu}_{2} \mathrm{I}_{2}\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]$
$M_{r}=797.33$
Triclinic, $P \overline{1}$
$a=8.0880$ (6) \AA
$b=8.9192$ (6) A
$c=9.7063(7) \AA$
$\alpha=92.372(1)^{\circ}$
$\beta=95.354(1)^{\circ}$
$\gamma=108.663(1)^{\circ}$
$V=658.60(8) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=2.010 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 2924 reflections
$\theta=2.4-28.3^{\circ}$
$\mu=3.99 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, orange
$0.28 \times 0.25 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.325, T_{\text {max }}=0.450$
4801 measured reflections

Refinement

Refinement on F^{2}
Refinement on F
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.060$
$S=1.02$
2565 reflections
163 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{I} 1-\mathrm{Cu} 1$	$2.6450(5)$	$\mathrm{Cu} 1-\mathrm{N} 1$	$2.073(2)$
$\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$2.6496(5)$	$\mathrm{Cu} 1-\mathrm{N} 3$	$2.082(2)$
$\mathrm{Cu} 1-\mathrm{I} 1-\mathrm{Cu} 1^{\mathrm{i}}$	$60.43(2)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{I} 1$	$106.07(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$107.55(9)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{I} 1^{\mathrm{i}}$	$107.96(7)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 1$	$107.12(7)$	$\mathrm{I} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\mathrm{i}}$	$119.57(2)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{I} 1^{\mathrm{i}}$	$108.03(7)$		

Symmetry code: (i) $1-x, 1-y, 1-z$.
H atoms were placed in calculated positions $[\mathrm{C}-\mathrm{H}=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$ and were included in the refinement in the riding-model approximation.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank Shantou University and the University of Malaya for supporting this study.

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Dyason, J. C., Engelhardt, L. M., Healy, P. C. \& White, A. H. (1984). Aust. J. Chem. 37, 2201-2205.
Ford, P. C., Cariati, E. \& Bourassa, J. (1999). Chem. Rev. 99, 3625-3647.
Habiyakare, A., Lucken, E. A. C. \& Bernardinelli, G. (1992). Z. Naturforsch. Teil A, 47,106-110.
Healy, P. C., Pakawatchai, C. \& White, A. H. (1983). J. Chem. Soc. Dalton Trans. pp. 1917-1927.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Rossenbeck, B. \& Sheldrick, W. S. (1999). Z. Naturforsch. Teil B, 54, 15101516.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

